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Summary: The rhodium catalyzed isomerization of 8-trimethylsilylallyl alcohols 

has been successfully applied for the regiospecific synthesis of trimethylsilyl 

enol ethers. 

Trimethylsilyl enol ethers have become extremely important intermediates in 

synthetic organic chemistry. 1, 2 Although the numerous methods for the 

regioselective synthesis of them are reported, most approaches depend on the 

energy difference between the kinetically and thermodynamically controlled 

forms. 
3 

Michael type addition of triethylsilane to a,B-enones 
4 

and the 

oxygenative conversion of vinylsilanes 5 provide unambigous routes for the 

regiospecific synthesis of silyl enol ethers, however, these methods are 

suffered from the relatively restricted starting materials. On the other hand, 

ruthenium catalyzed isomerization of ally1 silyl ethers to silyl enol ethers is 

also limited to aldehyde enolates. 6 We describe herein a successful 

regiospecific synthesis of trimethylsilyl enol ethers (2) from g-trimethylsilyl- 

ally1 alcohols (4) using HRh(CO)(PPh3)3 (2) and l-phenyl-2-trimethylsilyl-2- 

propen-l-one (2%) as catalysts. 

The present method is achieved by the successive migration of double bond 

and trimethylsilyl group in ally1 alcohols (2) which are readily prepared from 

aldehydes and a-trimethylsilylvinyl magnesiumbromide. When a benzene solution 

Of &I;, 2, and 31; was heated in a sealed tube, ally1 alcohol, ,+I; was consumed 

completely to give (E)-silyl enol ether ’ 2G 7 accompanied with small amounts of 
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Catalyst: HRh(CO)(PPh3)3 (2). 
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ketone, f& and ally1 silyl ether, 51;. No regioisomer of 2% was detected at all 

in G. C. analysis. Different from the reported isomerization of allylic 

Table 1. Catalytic isomerization of &trimethylsilylallyl alcohols (4). a) 

Entry Ally1 alcohol (3) Reaction Conversion Product selectivity (%)b) 
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a) Reactions were carried out at 105'C in a sealed tube including benzene (0.5 
ml) solutions of ally1 alcohols ,$ (2 mmol), 2 (0.1 tnmol), and (0.1 ~01). 
After the reaction products were collected by Kugelrohr distil $ 

e 
ation. 

b) Determined by GLC (PEG-20M). c) Two percent of 1-dodecen-3-one was detected. 
d) The remaining product was 1,4-Dioxane was used as a solvent. 
f) The remaining product was 
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compounds catalyzed by transition metal complexes, 6, 8 the presence of both 

2 and a,B-enone, 2% is crucial to give silyl enol ether, ,& selectively. 

In fact, replacement of ,&! by j36 (R=Me), 1-phenyl-2-propen-l-one, 1,3-diphenyl- 

2-propen-l-one, 3-buten-2-one, or p-quinone as the cocatalyst causes a sharp 

drop in the selectivity of 2~. The effect of transition metal species is 

also remarkable. Other rhodium complexes, C1Rh(PPh3)3, C1Rh(CO)(PPh3)3, and 

[(COD)Rh(Diphos)]+C104- did not show any catalytic effect. Ruthenium complex, 

H2Ru(PPh3)4 gave only desilylated ketone &. The scope of the reaction was 

demonstrated for various types of ally1 alcohols, which could be transformed 

to the corresponding silyl enol ethers regiospecifically. 
7 

The only 

unsatisfied result was given in the case of ,&. The results are summarized 

in Table 1. 

The resultant enolate forms are unequivocally directed to the carbon 

originally bearing trimethylsilyl group in all cases and does not isomerize 

during the prolonged reaction time. In addition to the terminal double bond, 

the internal one also migrates smoothly, however, the subsequent migration of 

the trimethylsilyl group is considerably retarded. The supposed intermediate 

a-trimethylsilylketone $Q which completely isomerized to ,@ in the longer 

heating was obtained as the mixture including almost equal amounts of ;iQ in 

the short reaction time (Entries 11 and 12 in Table 1). 

It should be emphasized that the present transformation discloses a novel 

methodology to differentiate both a-positions of asymmetric ketones. 

The selective migration of the silylvinyl site to form silyl enol ether ;i& is 

also confirmed by the intramolecular competition in ,JJ,. It provides 

an alternative route to 2-trimethylsiloxy-1,3-diene derivatives. 
9 

Scheme 1 illustrates the mechanistic rationale for the present 

Scheme 1. 
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transformation. Rhodium complex 2 enters the catalytic cycle which is 

initiated by the reaction with 2 to form alkoxy complex @. This intermediate 

@ interacts with & to give a-silylketone 2 along with simultaneous 

regeneration of 2 and active rhodium complex. Further rearrangement of 2 

leads to silyl enol ether 0. The authentic silylketone %I; 10 rearranged 

completely to ,5~ under the reaction conditions. 
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